Efficient and Fast Removal of Oils from Water Surfaces via Highly Oleophilic Polyurethane Composites

Author:

De Nino AntonioORCID,Olivito FabrizioORCID,Algieri VincenzoORCID,Costanzo PaolaORCID,Jiritano AntonioORCID,Tallarida Matteo AntonioORCID,Maiuolo Loredana

Abstract

In this study we evaluated the oil adsorption capacity of an aliphatic polyurethane foam (PU 1) and two of its composites, produced through surface coating using microparticles of silica (PU-Si 2) and activated carbon (PU-ac 3). The oil adsorption capacity in diesel was improved up to 36% using the composite with silica and up to 50% using the composite with activated carbon with respect to the initial PU 1. Excellent performances were retained in gasoline and motor oil. The adsorption was complete after a few seconds. The process follows a monolayer adsorption fitted by the Langmuir isotherm, with a maximum adsorption capacity of 29.50 g/g of diesel for the composite with activated carbon (PU-ac 3). These materials were proved to be highly oleophilic for oil removal from fresh water and sea water samples. Regeneration and reuse can be repeated up to 50 times by centrifugation, without a significant loss in adsorption capacity.

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3