Abstract
We studied the structural, electronic, and magnetic properties of a recently synthesized Ni(II)-quinonoid complex upon adsorption on a magnetic Co(001) substrate. Our density functional theory + U (DFT+U) calculations predict that the molecule undergoes a spin-state switching from low-spin S = 0 in the gas phase to high-spin S ≈ 1 when adsorbed on the Co(001) surface. A strong covalent interaction of the quinonoid rings and surface atoms leads to an increase of the Ni–O(N) bond lengths in the chemisorbed molecule that support the spin-state switching. Our DFT+U calculations show that the molecule is ferromagnetically coupled to the substrate. The Co surface–Ni center exchange mechanism was carefully investigated. We identified an indirect exchange interaction via the quinonoid ligands that stabilizes the molecule’s spin moment in ferromagnetic alignment with the Co surface magnetization.
Funder
Science and Engineering Research Board
Knut och Alice Wallenbergs Stiftelse
Subject
Materials Chemistry,Chemistry (miscellaneous),Electronic, Optical and Magnetic Materials
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献