An Improved 3D Magnetization Inversion Based on Smoothness Constraints in Spherical Coordinates

Author:

Zhang Liang,Lu GuangyinORCID,Zhu Ziqiang,Cao ShujinORCID

Abstract

In the inverse problem, the traditional way to obtain a stable solution is based on the maximum smoothness criteria. However, this approach cannot generate clearer and more focused images. In this study, we propose an improved inversion method based on the smoothness constraints. In the algorithm, the model weighting functions are updated by adding a model’s total gradient module matrix, which can effectively constrain the boundary of the recovery model in the iterative operation. We invert the 3D magnetization intensity for the three-component magnetic data in the spatial domain by spherical coordinates. The preconditional conjugate gradient algorithm is introduced to improve the efficiency of the solutions. We design two sets of synthetic examples to evaluate the inversion effects, which show that the improved method is more reliable than the smoothness constraint method. The boundary of the magnetic bodies is more precise, and the magnetization ranges are more focused. The method does not rely on the initial model and is suitable for magnetic vector data inversion. We also apply the algorithm to a set of Dabie orogen three-component magnetic data derived from a geomagnetic field model and verify the effectiveness of the inversion method.

Funder

National Natural Science Foundation of China

Hunan Provincial Science & Technology Department of China

Hunan Provincial Key Laboratory of Share Gas Resource Exploitation

Project of Doctoral Foundation of Hunan University of Science and Technology

Publisher

MDPI AG

Subject

Materials Chemistry,Chemistry (miscellaneous),Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3