Steady-State and Dynamic Rheological Properties of a Mineral Oil-Based Ferrofluid

Author:

Wang Hujun,Meng Yuan,Li Zhenkun,Dong Jiahao,Cui Hongchao

Abstract

In this study, nanoparticles were suspended in L-AN32 total loss system oil. The thixotropic yield behavior and viscoelastic behavior of ferrofluid were analyzed by steady-state and dynamic methods and explained according to the microscopic mechanism of magneto-rheology. The Herschel–Bulkley (H–B) model was used to fit the ferrofluid flow curves, and the observed static yield stress was greater than the dynamic yield stress. Both the static and dynamic yield stress values increased as the magnetic field increased, and the corresponding shear thinning viscosity curve increased more significantly as the magnetic field strength increased. The amplitude scanning results show that the linear viscoelastic region (LVE) is reached when the shear stress is 10%. The frequency scanning results showed that the storage modulus increased with the increase of the frequency at first. The storage modulus increased steadily at a higher frequency range, while the loss modulus increased slowly at the initial stage and rapidly at the later stage. In the amplitude sweep and frequency sweep experiments, the energy storage modulus and loss modulus are enhanced with the decrease of temperature. These findings are helpful to better understand the microscopic mechanism of magneto-rheology of ferrofluids, and also provide guidance for many practical applications.

Funder

National major scientific research instrument development project

Beijing Natural Science Foundation

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Materials Chemistry,Chemistry (miscellaneous),Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3