Structures and Properties of 4-phpy, pyz, and 4,4′-bpy Adducts of Lantern-Type Dirhodium Complexes with µ-Formamidinato and µ-Carboxylato Bridges

Author:

Handa MakotoORCID,Nishiura Satoshi,Kano Makoto,Yano Natsumi,Akashi Haruo,Mikuriya MasahiroORCID,Tanaka Hidekazu,Kawamoto TatsuyaORCID,Kataoka Yusuke

Abstract

Dinuclear and polymer complexes of 4-phenylpyridine (4-phpy), pyazine (pyz), and 4,4′-bipyridine (4,4′-bpy) were prepared by using cis-[Rh2(4-Me-pf)2(O2CR)2] (4-Me-pf- =N,N’-bis(4-methylphenyl)formamidinate anion; R = CF3 and CMe3) as precursor dinuclear units. The dinuclear structures of cis-[Rh2II,II(4-Me-pf)2(O2CR)2(4-phpy)2] and cis-[Rh2II,III(4-Me-pf)2(O2CCMe3)2(4-phpy)2]BF4 and polymer structures of [Rh2II,II(4-Me-pf)2(O2CR)2(L)]n (L = pyz and 4,4′-bpy) were confirmed by X-ray crystal structure analyses. In these complexes, the lantern-type dinuclear core structures with cis-(2:2) arrangement of formamidinato (4-Me-pf-) and carboxylato ligands are preserved with Rh–Rh distances of 2.44–2.47 Å, regardless of the difference in the axial ligand and oxidation state Rh2II,II or Rh2II,III. In the cyclic voltammograms (CVs) in CH2Cl2, the redox potentials for Rh2II,III/Rh2II,II were estimated as E1/2 = 0.07 V and −0.28 V (vs. Fc+/Fc) for cis-[Rh2(4-Me-pf)2(O2CCF3)2(4-phpy)2] and cis-[Rh2(4-Me-pf)2(O2CCMe3)2(4-phpy)2], respectively, negatively shifted by 0.16 and 0.12 V compared with those of corresponding parent dinuclear complexes. The results were interpreted that the axial interaction with 4-phpy ligands makes the Rh2II,II core oxidized easily. The oxidized complex cis-[Rh2(4-Me-pf)2(O2CCMe3)2(4-phpy)2]BF4 is paramagnetic, which was confirmed by effective magnetic moment value μeff = 1.90 μB at 300 K per Rh2II,III unit (S = 1/2). The polymer complexes [Rh2(4-Me-pf)2(O2CR)2(L)]n (L = pyz and 4,4′-bpy) showed Type II gas-adsorption properties for N2.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Publisher

MDPI AG

Subject

Materials Chemistry,Chemistry (miscellaneous),Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3