Abstract
Superconducting niobium nitride (NbN) films with nominal thicknesses of 4 nm, 5 nm, 7 nm, and 9 nm were grown on sapphire substrates using atomic layer deposition (ALD). We observed probed Hall resistance (HR) (Rxy) in external out-of-plane magnetic fields up to 6 T and magnetoresistance (MR) (Rxx) in external in-plane and out-of-plane magnetic fields up to 6 T on NbN thin films in Van der Pauw geometry. We also observed that positive MR dominated. Our study focused on the analysis of interaction and localisation effects on electronic disorder in NbN in the normal state in temperatures that ranged from 50 K down to the superconducting transition temperature. By modelling the temperature and magnetic field dependence of the MR data, we extracted the temperature-dependent Coulomb interaction constants, spin–orbit scattering lengths, localisation lengths, and valley degeneracy factors. The MR model allowed us to distinguish between interaction effects (positive MR) and localisation effects (negative MR) for in-plane and out-of-plane magnetic fields. We showed that anisotropic dephasing scattering due to lattice non-idealities in NbN could be neglected in the ALD-grown NbN thin films.
Funder
Deutsche Forschungsgemeinschaft
Federal Ministry of Education and Research
Office of Technology Assessment at the German Bundestag
Subject
Materials Chemistry,Chemistry (miscellaneous),Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献