Microstructure and Magnetic Properties of Grain Refined Pr2Co14B Melt-Spun Ribbons

Author:

Nlebedim I.,Huang M.,Sun K.,Zhou L.,McCallum R.,Kramer M.

Abstract

The correlation between the grain refining effect of TiC on the microstructure of Pr2Co14B melt-spun ribbons and the magnetic properties is presented in this study. TiC enabled greater control of microstructure both in the as-spun and heat treated Pr2Co14B, compared with the material without TiC. As a result, coercivity of the sample with TiC was nearly twice that of the sample without TiC. In addition to Pr2Co14B, two other phases were found in the sample with TiC: one rich in Co and the other having a composition near PrCo2. TiC was found near the grain boundaries and at triple junctions. Also no Ti or C was found in the matrix phase indicating extreme low solubility of the elements when both are present with Pr2Co14B. As expected, both the samples with and without TiC have similar anisotropy field but the presence of room temperature non-ferromagnetic phases (TiC and PrCo2), caused a small decrease in magnetization of the sample with TiC although the romance of the isotropic materials were comparable.

Funder

U.S. Department of Energy

Publisher

MDPI AG

Subject

Materials Chemistry,Chemistry (miscellaneous),Electronic, Optical and Magnetic Materials

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ResQ: Residual Quantization for Video Perception;2023 IEEE/CVF International Conference on Computer Vision (ICCV);2023-10-01

2. Transformer Tracking with Cyclic Shifting Window Attention;2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR);2022-06

3. Effect of Microstructural Features on Magnetic Properties of High-Carbon Steel;Metallurgical and Materials Transactions A;2021-09-26

4. DexYCB: A Benchmark for Capturing Hand Grasping of Objects;2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR);2021-06

5. Enhancement in hard magnetic properties of (Nd, Pr)–Fe–B melt-spun ribbons;Journal of Applied Physics;2020-10-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3