Abstract
Bi-magnetic core/shell nanoparticles were synthesized by a two-step high-temperature decomposition method of metal acetylacetonate salts. Transmission electron microscopy confirmed the formation of an ultrathin shell (~0.6 nm) of NiO and NiFe2O4 around the magnetically hard 8 nm CoFe2O4 core nanoparticle. Magnetization measurements showed an increase in the coercivity of the single-phase CoFe2O4 seed nanoparticles from ~1.2 T to ~1.5 T and to ~2.0 T for CoFe2O4/NiFe2O4 and CoFe2O4/NiO, respectively. The NiFe2O4 shell also increases the magnetic volume of particles and the dipolar interparticle interactions. In contrast, the NiO shell prevents such interactions and keeps the magnetic volume almost unchanged.
Subject
Materials Chemistry,Chemistry (miscellaneous),Electronic, Optical and Magnetic Materials
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献