Abstract
Two new cobalt(II) complexes with an unsymmetrical bidentate ligand, 2-(1,4,5,6-tetrahydropyrimidin-2-yl)-6-methoxyphenol (H2mthp), were synthesized and crystallographically characterized. Tetra- and hexa-coordinate mononuclear complexes were selectively obtained by adjusting the stoichiometry of the base. The coordination geometry of hexa-coordinated complex was severely distorted from an ideal octahedron, due to the NO5 coordination environment from the mixed coordination of one Hmthp− and two H2mthp ligands. Both complexes formed one-dimensional chain networks by hydrogen-bond and N-H···π interactions. Single-molecule magnet behavior was observed for the tetrahedral complex under zero magnetic field. The relatively short Co···Co distances induced non-zero intermolecular magnetic coupling, which split the ground ±Ms levels to suppress quantum-tunneling of magnetization. In the octahedral complex, by contrast, the distance was not short enough to induce the coupling. As a consequence, single-molecule magnetic behavior was observed for the octahedral complex only in the presence of an external static field.
Funder
MEXT
The Mitani Foundation for Research and Development
Subject
Materials Chemistry,Chemistry (miscellaneous),Electronic, Optical and Magnetic Materials