Graphene-Coated Iron Nitride Streptavidin Magnetic Beads: Preparation and Application in SARS-CoV-2 Enrichment

Author:

Li Jianxing,Wang Minglian,Jia Runqing,Ma Zhuang,Zhang Xiaoxu,Li Jintao,Xiao Xiangqian,Zhou Yunzhi,Wang Qun

Abstract

In this study, we prepared a streptavidin magnetic bead based on graphene-coated iron nitride magnetic beads (G@FeN-MB) and tried to use it for the enrichment of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The outer shell of our magnetic bead was wrapped with multiple graphene sheets, and there is no report on the application of graphene to the magnetic-bead-coating material. First, the graphene shell of G@FeN-MB was oxidized by a modified Hummer method so as to generate the carboxyl groups required for the coupling of streptavidin (SA) on the surface of the magnetic beads. X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM) were used to characterize the oxidized G@FeN-MB (GO@FeN-MB). Streptavidin was then linked to the surface of the GO@FeN-MB by coupling the amino of the streptavidin with the carboxyl on the magnetic beads by carbodiimide method; thus, the streptavidin magnetic beads (SAMBs) were successfully prepared. To prove the practicality of the SAMBs, biotinylated SARS-CoV-2 S1 antibody was linked with it to respectively capture SARS-CoV-2 Spike-protein-coupled polystyrene beads (S-PS) and pseudovirus with S-protein expressed. Microplate reader and fluorescence microscope results show that the SAMBs can effectively enrich viruses. In conclusion, the preparation of SAMBs with G@FeN-MB is feasible and has potential for application in the field of virus enrichment.

Funder

Beijing Natural Science Foundation

Publisher

MDPI AG

Subject

Materials Chemistry,Chemistry (miscellaneous),Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3