Pulse Magnetic Fields Induced Drug Release from Gold Coated Magnetic Nanoparticle Decorated Liposomes

Author:

Acharya Basanta,Chikan ViktorORCID

Abstract

Magnetic nanoparticle-assisted drug release from liposomes is an important way to enhance the functionality/usefulness of liposomes. This work demonstrates an approach how to integrate magnetic nanoparticles with liposomes with the assistance of gold–thiol chemistry. The gold coated magnetic particles cover the thiolated liposomes from the outside, which removes the competition of the drug molecules and the triggering magnetic particles to free the inner space of the liposomes when compared to previous magneto liposome formulations. The liposome consists of dipalmitoyl phosphatidylcholine (DPPC) combined with distearoylphosphatidylcholine (DSPC) in addition to regular cholesterol or cholesterol-PEG-SH. Permeability assays and electron microscopy images show efficient coupling between the liposomes and nanoparticles in the presence of thiol groups without compromising the functionality of the liposomes. The nanoparticles such as gold nanoparticles, gold coated iron oxide nanoparticles and bare iron oxide nanoparticles are added following the model drug encapsulation. The efficient coupling between the gold coated nanoparticles (NPs) and the thiolate liposomes is evidenced by the shift in transition temperature of the thiolated liposomes. The addition of magnetically triggerable nanoparticles externally makes the entire interior of liposomes available for drug loading. The drug release efficiencies of these liposomes/NPs complexes were compared under exposure to pulsed magnetic fields. The results indicate up to 20% of the drug can be released in short time, which is comparable in efficiency to previous studies performed when magnetic NPs were located inside liposomes. Interestingly, the liposomes were found to exhibit variations in release efficiency based on different dilution media which is attributed to an osmotic pressure effect on liposomal stability.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Materials Chemistry,Chemistry (miscellaneous),Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3