Abstract
New tools for cancer diagnosis are being studied since early diagnosis can be crucial for a successful treatment. In this context, the use of NMR probes constitutes an efficient method of diagnosis. In this study, we investigated the use of ciprofloxacin to indirectly label the overexpression of topoisomerase-II enzymes by changes in 19F NMR chemical shifts of ciprofloxacin. Increased topoisomerase-II expression has been associated with cancer occurrence, mainly with aggressive forms of breast cancer, thus constituting a promising molecular target for new tumor cell identifiers. Using DFT calculations, we performed a spectroscopy analysis of ciprofloxacin in different chemical environments and evaluated the solvent and enzymatic effects. Our results show that ciprofloxacin forms a stable complex with the enzyme, and the main intermolecular interactions between ciprofloxacin and human topoisomerase-IIβ are hydrogen bonds, followed by π-π stacking and electrostatic interactions. Additionally, a shift of 6.04 ppm occurs in the 19F NMR signal when ciprofloxacin interacts with the human topoisomerase-IIβ enzyme, and this parameter may be an indirect marker indicating the overexpression of these enzymes in the body.
Funder
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Fundação de Amparo ao Ensino e Pesquisa de Minas Gerais
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior/Ministério da Defesa
Subject
Materials Chemistry,Chemistry (miscellaneous),Electronic, Optical and Magnetic Materials