Removal of Metal Ions via Adsorption Using Carbon Magnetic Nanocomposites: Optimization through Response Surface Methodology, Kinetic and Thermodynamic Studies

Author:

Muntean Simona Gabriela1ORCID,Halip Liliana1,Nistor Maria Andreea1,Păcurariu Cornelia2

Affiliation:

1. “Coriolan Drăgulescu” Institute of Chemistry Timisoara of Romanian Academy, 300223 Timisoara, Romania

2. Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, P-ța Victoriei No. 2, 300006 Timisoara, Romania

Abstract

The toxicity of metal ions on ecosystems has led to increasing amounts of research on their removal from wastewater. This paper presents the efficient application of a carbon magnetic nanocomposite as an adsorbent for the elimination of metal ions (copper, lead and zinc) from aqueous solutions. A Box–Behnken factorial design combined with the response surface methodology was conducted to investigate the effect and interactions of three variables on the pollutant removal process. Highly significant (p < 0.001) polynomial models were developed for each metal ion: the correlation coefficient was 0.99 for Cu(II) and Pb(II), and 0.96 for Zn(II) ion removal. The experimental data were in agreement and close to the theoretical results, which supports the applicability of the method. Working at the natural pH of the solutions, with a quantity of carbon magnetic nanocomposite of 1 g/L and a metal ions’ concentration of 10 mg/L, for 240 min, removal efficiencies greater than 75% were obtained. The kinetic study indicated that a combination of kinetic models pseudo-second order and intraparticle diffusion were applied appropriately for copper, lead and zinc ion adsorption on carbon magnetic nanocomposite. The maximum adsorption capacities determined from the Langmuir isotherm model were 81.36, 83.54 and 57.11 mg/g for copper, lead and zinc ions. The average removal efficiency for five adsorption–desorption cycles was 82.21% for Cu(II), 84.50% for Pb(II) and 72.68% for Zn(II). The high adsorption capacities of metal ions, in a short time, as well as the easy separation of the nanocomposite from the solution, support the applicability of the magnetic carbon nanocomposite for wastewater treatment.

Publisher

MDPI AG

Subject

Materials Chemistry,Chemistry (miscellaneous),Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3