Impact of Silica-Modification and Oxidation on the Crystal Structure of Magnetite Nanoparticles

Author:

Dzeranov ArturORCID,Bondarenko LyubovORCID,Pankratov DenisORCID,Dzhardimalieva GulzhianORCID,Jorobekova Sharipa,Saman Daniel,Kydralieva Kamila

Abstract

At present, the widespread use of iron oxide nanoparticles, including for commercial purposes, requires strict preservation of their phase composition during their application. The choice of nanoparticle modifier and modification conditions is decisive due to their high sensitivity to oxygen in the case of using real conditions (O2, pH change, etc.). In this work, we studied the change in the phase composition of magnetite nanoparticles after modification with 3-aminopropyltriethoxysilane (APTES) and oxidation with nitric acid in order to estimate the protective potential of the silica shell. After modification by APTES and oxidation with nitric acid, the nonstoichiometric nature of the magnetite nanoparticles according to XRD data increased, which indicates an increase in transition forms compared to the initial sample (magnetite content decreased to 27% and 24%, respectively). In contrast, Mössbauer spectroscopy data detected a decrease in the nonstoichiometric index due to APTES modification conditions, but strong oxidation after exposure to nitric acid. It also showed that by analyzing the data of the diffraction analysis and Mössbauer spectroscopy for the same sample, one can obtain information not only about the ionic composition of “magnetite”, but also about the distribution of iron ions of different charges over the crystalline and amorphous parts of the preparation.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Materials Chemistry,Chemistry (miscellaneous),Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3