The Importance of Solvent Effects in Calculations of NMR Coupling Constants at the Doubles Corrected Higher Random-Phase Approximation

Author:

Jessen Louise Møller1ORCID,Reinholdt Peter2ORCID,Kongsted Jacob2ORCID,Sauer Stephan P. A.1ORCID

Affiliation:

1. Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark

2. Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark

Abstract

In this work, 242 NMR spin–spin coupling constants (SSCC) in 20 molecules are calculated, either with correlated wave function methods, SOPPA and HRPA(D), or with density functional theory based on the B3LYP, BHandH, or PBE0 functionals. The calculations were carried out with and without treatment of solvation via a polarizable continuum model in both the geometry optimization step and/or the SSCC calculation, and thereby, four series of calculations were considered (the full-vacuum calculation, the full-solvent calculation, and the two cross combinations). The results were compared with experimental results measured in a solvent. With the goal of reproducing experimental values, we find that the performance of the PBE0 and BHandH SSCCs improves upon including solvation effects. On the other hand, the quality of the B3LYP SSCCs worsens with the inclusion of solvation. Solvation had almost no effect on the performance of the SOPPA and HRPA(D) calculations. We find that the PBE0-based calculations of the spin–spin coupling constants have the best agreement with the experimental data.

Funder

Novo Nordisk Foundation

Publisher

MDPI AG

Subject

Materials Chemistry,Chemistry (miscellaneous),Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3