Spin-Peierls, Spin-Ladder and Kondo Coupling in Weakly Localized Quasi-1D Molecular Systems: An Overview

Author:

Pouget Jean-Paul1

Affiliation:

1. Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, 91405 Orsay, France

Abstract

We review the magneto-structural properties of electron–electron correlated quasi-one- dimensional (1D) molecular organics. These weakly localized quarter-filled metallic-like systems with pronounced spin 1/2 antiferromagnetic (AF) interactions in stack direction exhibit a spin charge decoupling where magnetoelastic coupling picks up spin 1/2 to pair into S = 0 singlet dimers. This is well illustrated by the observation of a spin-Peierls (SP) instability in the (TMTTF)2X Fabre salts and related salts with the o-DMTTF donor. These instabilities are revealed by the formation of a pseudo-gap in the spin degrees of freedom triggered by the development of SP structural correlations. The divergence of these 1D fluctuations, together with the interchain coupling, drive a 3D-SP ground state. More surprisingly, we show that the Per2-M(mnt)2 system, undergoing a Kondo coupling between the metallic Per stack and the dithiolate stack of localized AF coupled spin ½ (for M = Pd, Ni, Pt), enhances the SP instability. Then, we consider the zig-zag spin ladder DTTTF2-M(mnt)2 system, where unusual singlet ground state properties are due to a combination of a 4kF charge localization effect in stack direction and a 2kF SP instability along the zig-zag ladder. Finally, we consider some specific features of correlated 1D systems concerning the coexistence of symmetrically different 4kF BOW and 4kF CDW orders in quarter-filled organics, and the nucleation of solitons in perturbed SP systems.

Publisher

MDPI AG

Subject

Materials Chemistry,Chemistry (miscellaneous),Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3