Biodiesel Production from Macroalgae Oil from Fucus vesiculosus Using Magnetic Catalyst in Unconventional Reactor Assisted by Magnetic Field

Author:

Silveira Junior Euripedes GarciaORCID,de Souza Lilian Fiori Boechat,Perez Victor HaberORCID,Justo Oselys Rodriguez,Simionatto Euclésio,de Oliveira Lincoln Carlos Silva

Abstract

A novel magnetic catalyst with hollow cylinder shape based on K2CO3/γ-Al2O3/Sepiolite/CoFe2O4 was prepared to convert macroalgae oil (Fucus vesiculosus) into biodiesel in an unconventional reactor assisted by magnetic field. Catalysts were formulated by the extrusion and characterized satisfactorily by physicochemical (mechanical strength, XRD, TG/DTG, FTIR and TPD-CO2), magnetic (VSM and EPR), morphological (SEM) and textural properties (BET). While their catalytic performance was also evaluated at 70 °C, oil: ethanol molar ratio 1:12 and 6 wt.% of catalyst using two different reaction systems for comparative purposes: (a) conventional stirred reactor and (b) fluidized bed reactor assisted by a magnetic field. The attained biodiesel presents properties in accordance with the standard limits (ASTM and EN) and total conversion (>99%) was observed in both cases after 2 h of reaction without significant differences between the two reactors. However, the magnetic properties of these catalysts allowed stabilization of the bed under a magnetic field and easy magnetic catalyst separation/recovery at the reaction end, showing their great potential for biodiesel production with regard to conventional process and thus, transforming it into a more sustainable technology.

Funder

Foundation Carlos Chagas Filho Research Support from the State of Rio de Janeiro

Coordination for the Improvement of Higher-Level Personnel-Brazil

National Council for Scientific and Technological Development

Estácio de Sá University

Publisher

MDPI AG

Subject

Materials Chemistry,Chemistry (miscellaneous),Electronic, Optical and Magnetic Materials

Reference72 articles.

1. Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., and Pidcock, R. (2018). Global Warming of 1.5 °C, Cambridge University Press. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty.

2. REN21 (2021). Renewables 2021 Global Status Report (Paris: REN21 Secretariat), REN21.

3. Biodiesel production from heterogeneous catalysts based K2CO3 supported on extruded γ-Al2O3;Perez;Fuel,2019

4. Biodiesel production from non-edible forage turnip oil by extruded catalyst;Silveira;Ind. Crops Prod.,2019

5. Rubber seed oil as potential non-edible feedstock for biodiesel production using heterogeneous catalyst in Thailand;Roschat;Renew. Energy,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3