Interplay of Magnetic Interaction and Electronic Structure in New Structure RE-12442 Type Hybrid Fe-Based Superconductors

Author:

Pokhriyal Amit12,Ghosh Abyay3,Sen Smritijit4,Ghosh Haranath12

Affiliation:

1. Raja Ramanna Centre for Advanced Technology, Indore 452013, India

2. Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India

3. School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, UK

4. Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181—UCCS—Unité de Catalyse et Chimie du Solide, F-59000 Lille, France

Abstract

We present detailed first-principles density functional theory-based studies on RbRE2Fe4As4O2 (RE = Sm, Tb, Dy, Ho) hybrid 12442-type iron-based superconducting compounds with particular emphasis on competing magnetic interactions and their effect on possible magneto-structural coupling and electronic structure. The stripe antiferromagnetic (sAFM) pattern across the xy plane emerges as the most favorable spin configuration for all the four compounds, with close competition among the different magnetic orders along the z-axis. The structural parameters, including arsenic heights, Fe-As-Fe angle, and other relevant factors that influence superconducting Tc and properties, closely match the experimental values in stripe antiferromagnetic arrangement of Fe spins. Geometry optimization with inclusion of explicit magnetic ordering predicts a spin–lattice coupling for all the four compounds, where a weak magneto–structural transition, a tetragonal-to-orthorhombic structural transition, takes place in the relaxed stripe antiferromagnetic spin configuration. Absence of any experimental evidence of such structural transition is possibly an indication of nematic transition in RE-12442 compounds. As a result of structural distortion, the lattice contracts (expands) along the direction with parallel (anti-parallel) alignment of Fe spins. Introduction of stripe antiferromagnetic order in Fe sub-lattice reconstructs the low-energy band structure, which results in significantly reduced number of bands crossing the Fermi level. Moreover, the dispersion of bands and their orbital characteristics also are severely modified in the stripe antiferromagnetic phase similar to BaFe2As2. Calculations of exchange parameters were performed for all the four compounds. Exchange coupling along the anti-parallel alignment of Fe spins J1a is larger than that for the parallel aligned spins J1b. A crossover between the super-exchange-driven in-plane next-nearest-neighbor exchange coupling J2 and in-plane exchange coupling J1a due to lanthanide substitution was found. A large super-exchange-driven next-nearest-neighbor exchange interaction is justified using the construction of 32 maximally localized Wannier functions, where the nearest-neighbor Fe-As hopping amplitudes were found to be larger than the nearest- and the next-nearest-neighbor Fe-Fe hopping amplitudes. We compare the hopping parameters in the stripe antiferromagnetic pattern with non-magnetic configuration, and increased hopping amplitude was found along the anti-parallel spin alignment with more majority-spin electrons in Fe dxz and dxy but not in Fe dyz. On the other hand, the hopping amplitudes are increased in stripe antiferromagnetic phase along the parallel spin alignment with more majority-spin electrons in only Fe dyz. This difference in hopping amplitudes in the stripe antiferromagnetic order enables more isotropic hopping.

Publisher

MDPI AG

Subject

Materials Chemistry,Chemistry (miscellaneous),Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3