Affiliation:
1. ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Science and Technology Facilities Council, Didcot OX11 0QX, UK
2. Physics Department, Durham University, South Road, Durham DH1 3LE, UK
Abstract
Chemically altering molecules can have dramatic effects on the physical properties of a series of very similar molecular compounds. A good example of this is within the quasi-1D spin-Peierls system potassium TCNQ (TCNQ = 7,7,8,8-tetracyanoqunidimethane), where substitution of TCNQF4 for TCNQ has a dramatic effect on the 1D interactions, resulting in a drop in the corresponding spin-Peierls transition temperature. Within this work, we extend the investigation to potassium TCNQBr2, where only two protons of TCNQ can be substituted with bromine atoms due to steric constraints. The new system exhibits evidence for a residual component of the magnetism when probed via magnetic susceptibility measurements and muon spin spectroscopy. The observations suggest that the system is dominated by short range, and potentially disordered, correlations within the bulk phase.
Subject
Materials Chemistry,Chemistry (miscellaneous),Electronic, Optical and Magnetic Materials