Novel Concentric Magnetic Continuum Robot with Multiple Stiffness Modes for Potential Delivery of Nanomedicine

Author:

Li Na123ORCID,Lin Daojing123,Wu Junfeng123,Gan Quan123,Hu Xingyue123,Jiao Niandong12ORCID

Affiliation:

1. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China

2. Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China

3. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

The utilisation of miniature robots has become essential in the domain of minimally invasive surgery and long-distance delivery of nanomedicine. Among these, the miniature magnetic continuum robot (MCR) stands out because of its simple structure and dexterity, which allow it to penetrate small cavities, transport specialised tools such as a laser, and deliver medications to support surgical treatment. Nevertheless, because of their soft bodies with a single stiffness, conventional MCRs have limited controllability when navigating through intricate cavities. To address this limitation, we propose a novel concentric magnetic continuum robot (C-MCR) comprising a concentric magnetic catheter with a guidewire having varying stiffness. The C-MCR allows substantial curvature bending owing to its difference in stiffness, and its detachable nature allows it to have four working modes to adapt to specific application requirements with improved stiffness controllability. Experiments demonstrate the ability of the C-MCR to navigate complex pathways and deliver nanomedicines over long distances to specific areas via its internal channels using a large homemade eight-coil electromagnetic system. The C-MCR offers promising application prospects for the long-distance delivery of tailored nanomedicines because of its simple operation, reduced risks, and larger attainable workspace.

Funder

CAS Project for Young Scientists in Basic Research

National Natural Science Foundation of China

CAS/SAFEA International Partnership Program for Creative Research Teams

Publisher

MDPI AG

Subject

Materials Chemistry,Chemistry (miscellaneous),Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3