Abstract
Sm2Fe17N3 compounds, having excellent intrinsic magnetic properties, are prone to decomposition at high temperatures; thus, a low melting point metal binder is the key to prepare high performance bulk magnets at low temperatures. In this paper, a new low melting point alloy Ce72Cu28-xAlx was used as the binders, and high-performance Ce-based alloy bonding Sm2Fe17N3 magnets were realized by the hot-pressing method. The experimental results demonstrated that the content of Al in the Ce-based alloys had an important influence on the performance of the magnets. High performance Sm-Fe-N bonded magnets with remanence of 10.19 KGs and maximum magnetic energy product of 21.06 MGOe were achieved by using 5 wt.% Ce72Cu22Al6 alloy as a binder. At the same time, it was found that the Ce72Cu28-xAlx alloy has a lower density and better bonding effect than the common Zn binder. Its bonding magnets still have higher performance even with extremely high oxygen content. Therefore, Ce72Cu28-xAlx alloy with low melting point is a promising new rare earth-based alloy binder. If the oxygen content of the alloy powders could be reduced, higher performance Sm2Fe17N3 bonded magnets can be prepared.
Funder
Basic public welfare research program of Zhejiang Province
National Natural Science Foundation of China
Key R&D Project of Zhejiang Provincial Department Science and Technology
Scientific Research Fund of Zhejiang Provincial Education Department
Subject
Materials Chemistry,Chemistry (miscellaneous),Electronic, Optical and Magnetic Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献