Diverse Magnetic Properties of Two New Binuclear Complexes Affected by [FeN6] Octahedral Distortion: Two-Step Spin Crossover versus Antiferromagnetic Interactions

Author:

Gao Yue1,Li Yu-Qin1,Li Yao1,Dai Jing-Wei2ORCID,Wang Jin-Hua3,Wu Ying-Ying1,Yamashita Masahiro4,Li Zhao-Yang1ORCID

Affiliation:

1. School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Tianjin 300350, China

2. State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, China

3. College of Medicine and Nursing, Dezhou University, Dezhou 253023, China

4. Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-Ku, Sendai 980-8578, Japan

Abstract

Polymetallic complexes with covalently bridged metal centers that interact magnetically are important in the molecular magnetism field, with binuclear compounds receiving special attention because they represent the simplest type of multinuclear species with covalently bridged metal centers. Herein, we report the synthesis and properties of two new binuclear FeII complexes, namely, {[Fe(abpt-TPE)(NCS)2]2(bpym)}·2MeOH·2MeCN (1) and {[Fe(abpt-TPE)(NCS)2]2(bpym)}·2CH2Cl2 (2) (bpym = 2,2′-bipyrimidine). The crystal structure is analyzed at different temperatures, and its properties are analyzed by variable-temperature magnetic susceptibility and variable-temperature fluorescence emission spectroscopy tests. Variable-temperature magnetic susceptibility measurements of two binuclear compounds show different types of magnetic behavior. Complex 1 exhibits two-step spin transition behavior with an intermediate state near 150 K (Tc1 = 191 K, Tc2 = 111 K); 1 undergoes an [LS–LS] ↔ [LS–HS] ↔ [HS–HS] spin transition during thermal induction. On the other hand, complex 2 exhibits intramolecular antiferromagnetic coupling, with J = −0.47 cm−1. The analysis of correlations between the structural characteristics and different types of magnetic behaviors for two binuclear complexes, revealed that the different magnetic behaviors shown by the two complexes are attributable to different degrees of [FeN6] octahedral distortion caused by different lattice solvents, ligand strain and crystal stacking.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Materials Chemistry,Chemistry (miscellaneous),Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3