Levofloxacin Adsorption onto MWCNTs/CoFe2O4 Nanocomposites: Mechanism, and Modeling Using Non-Linear Kinetics and Isotherm Equations

Author:

Al-Musawi Tariq J.,Almajidi Yasir QasimORCID,Al-Essa Ethar M.,Romero-Parra Rosario Mireya,Alwaily Enas R.,Mengelizadeh Nezamaddin,Ganji Fatemeh,Balarak DavoudORCID

Abstract

In the present work, the adsorption mechanism and capacity of MWCNTs/CoFe2O4 nanocomposite as an adsorbent were investigated. Levofloxacin (LFX), a widely used antibiotic, was selected as a hazardous model contaminant in aqueous solutions. The surface and inner characterization of MWCNTs/CoFe2O4 was obtained via SEM/TEM, XRD, BET/BJH, and pHPZC. These analyses indicated that MWCNTs/CoFe2O4 possess excellent surface and pore characteristics, e.g., specific surface area, pore volume, and mean pore diameter, which were 72 m2/g, 0.51 cm3/g, and 65 nm, respectively. The results demonstrate that by supplementing 1 g/L of MWCNTs/CoFe2O4 at experimental conditions of pH value of 5, temperature of 30 °C, initial LFX concentration of 50 mg/L and mixing time of 90 min, a significant outcome of 99.3% removal was achieved. To identify the phenomenon of adsorption, the thermodynamic parameters of ΔH° and ΔS° were calculated, which indicated that the nature of LFX adsorption onto MWCNTs/CoFe2O4 nanocomposite was endothermic and spontaneous. Nine isotherm models, including four two-parameter and five three-parameter models, were investigated. In addition, the regression coefficient as well as five error coefficient models were calculated for nonlinear isotherm models. According to the goodness of fit tests, the equilibrium data were well coordinated with the Freundlich and Sips isotherms. The kinetics study showed that the LFX adsorption data well fitted with pseudo-second-order model, and the adsorption of LFX molecules occurred through several stages from surface to intraparticle diffusion. In conclusion, the present work evinces that LFX wastewater can be efficiently treated via an adsorption process using a MWCNTs/CoFe2O4 nanocomposite.

Funder

Zahedan University of Medical Sciences, Zahedan

Publisher

MDPI AG

Subject

Materials Chemistry,Chemistry (miscellaneous),Electronic, Optical and Magnetic Materials

Reference64 articles.

1. A Theoretical Study of the Size Effect of Carbon Nanotubes on the Removal of Water Chemical Contaminants;Asif;J. Res. Sci. Eng. Technol.,2018

2. Optimisation using Taghuchi method and Heterogeneous Fenton-like Process with Fe3O4/MWCNTS Nano-Composites as the Catalyst for Removal an Antibiotic;Salari;Adv. Appl. NanoBio-Technol.,2021

3. Potential of coagulation to remove particle-associated and free-living antibiotic resistome from wastewater;Yu;J. Hazard. Mater.,2021

4. Removal of antibiotics from wastewaters by membrane technology: Limitations, successes, and future improvements;Nasrollahi;Sci. Total Environ.,2022

5. Electrochemical Sensor Based on Nanocomposite of Multi-Walled Carbon Nano-Tubes (MWCNTs)/TiO2/Carbon Ionic Liquid Electrode Analysis of Acetaminophen in Pharmaceutical Formulations;Azin;Iran. J. Chem. Chem. Eng. (IJCCE),2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3