Two-Step Calcination-Method-Derived Al-Substituted W-Type SrYb Hexaferrites: Their Microstructural, Spectral, and Magnetic Properties

Author:

Yang YujieORCID

Abstract

W-type hexaferrites were discovered in the 1950s and are of interest for their potential applications. In this context, many researchers have conducted studies on the partial substitution of Fe sites in order to modify their electric and magnetic properties. In this study, W-type SrYb hexaferrites using Al3+ as substitutes for Fe3+ sites with the nominal composition Sr0.85Yb0.15Zn1.5Co0.5AlxFe16−xO27 (0.00 ≤ x ≤ 1.25) were successfully synthesized via the two-step calcination method. The microstructures, spectral bands of characteristic functional groups, morphologies, and magnetic parameters of the prepared samples were characterized using XRD, FTIR, SEM, EDX, and VSM. The XRD results showed that, compared with the standard patterns for the W-type hexaferrite, the W-type SrYb hexaferrites with the Al content (x) of 0.00 ≤ x ≤ 1.25 were a single-W-type hexaferrite phase. SEM images showed the flakes and hexagonal grains of W-type hexaferrites with various Al content (x). The saturation magnetization (Ms) and magneton number (nB) decreased with Al content (x) from 0.00 to 1.25. The remanent magnetization (Mr) and coercivity (Hc) decreased with Al content (x) from 0.00 to 0.25. Additionally, when the Al content (x) ≥ 0.25, Mr and Hc increased with the increase in the Al content (x). The magnetic anisotropy field (Ha) and first anisotropy constant (K1) increased with the Al content (x) increasing from 0.00 to 1.25. Al-substituted W-type SrYb hexaferrites with soft magnetic behavior, high Ms, and lower Hc may be used as microwave-absorbing materials.

Publisher

MDPI AG

Subject

Materials Chemistry,Chemistry (miscellaneous),Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3