Research on Electromagnetic Radiation Characteristics of Energetic Materials

Author:

Cui YuanboORCID,Kong Deren,Jiang Jian,Gao Shang

Abstract

During the explosion of energetic materials, electromagnetic interference is generated, which can affect the normal operation of surrounding electronic equipment. Therefore, an electromagnetic radiation measurement device based on a short-wave omnidirectional antenna and ultra-wideband omnidirectional antenna was designed to measure the electromagnetic radiation generated by the explosion of energetic materials of different masses, and the electromagnetic radiation characteristics were obtained through data processing. The results showed that the electromagnetic signal can still be collected hundreds of milliseconds after the explosive is detonated, and the electromagnetic radiation generated by the explosion is continuous and intermittent, which is a phenomenon that has not been found in this field at present. The mass of the energetic material had a significant effect on the time-domain characteristics of the electromagnetic radiation generated by the explosion: the higher the mass of the energetic material was, the shorter the delay response of the electromagnetic signal was, the longer the duration was, and the earlier the peak appeared. The frequency of electromagnetic radiation signals generated by the explosion of energetic materials was mainly concentrated below 100 MHz, and the energy was most concentrated in the frequency band of 0~50 MHz. The composition of energetic materials had the greatest influence on the spectral distribution, and the spectral distribution of electromagnetic radiation produced by the explosion of explosives with different compositions had obvious specificity. The electromagnetic radiation intensity generated by the explosion of energetic materials had a strong correlation with the distance from the explosion center, and it significantly decreased as the distance increased. The structure and detonation method of energetic materials changed the geometrical motion pattern during the explosion, resulting in the non-uniformity of electromagnetic radiation propagation.

Funder

Fundamental Research Funds for the Central Universities

Natural Science Foundation of Jiangsu Province, China

Jiangsu Planned Projects for Postdoctoral Research Funds

Publisher

MDPI AG

Subject

Materials Chemistry,Chemistry (miscellaneous),Electronic, Optical and Magnetic Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis on Anti-Interference Performance of Sensor in Explosive Electromagnetic Environment;IEEE Sensors Journal;2024-02-01

2. Characteristics and variation laws of electromagnetic radiation generated during explosion;Propellants, Explosives, Pyrotechnics;2023-11-21

3. Measurement method for electromagnetic radiation generated during a high-capacity warhead explosion;Measurement Science and Technology;2023-06-13

4. Research on the layout of electromagnetic radiation measurement points for explosion of energetic materials;Third International Seminar on Artificial Intelligence, Networking, and Information Technology (AINIT 2022);2023-02-22

5. ROOT CAUSE OF AN UNCOMMON ELECTRONIC DETONATOR FAILURE;International Journal of Energetic Materials and Chemical Propulsion;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3