Evidence of Hysteresis Free Ferromagnetic Nature and Significant Magnetocaloric Parameters in FeNi Binary Alloy

Author:

Sharma Mohit K.ORCID,Kumar Akshay,Kumari Kavita,Park Su-Jeong,Yadav Naveen,Huh Seok-Hwan,Koo Bon-Heun

Abstract

In this study, our aim is to investigate the structural, magnetic, and magnetocaloric properties of the FeNi binary alloy. The FeNi alloy with Fe65Ni35 composition was prepared by ball milling followed by the annealing and quenching processes. A Rietveld refinement analysis of structural results reveals that this system has coexisting cubic structural phases with a dominant face-centered cubic phase (Fm-3m;γ-FeNi). Magnetization results of this compound indicate the presence of ferromagnetic ordering and the magnetic transition observed around 100 K. Moreover, an Arrott plot study provides information about the order of phase transition, which is found in the second-order near the ordering temperature, whereas first-order nature is also noted in the low-temperature region. The significant magnetocaloric parameters, i.e., magnetic entropy change (ΔSM~0.495 J/kg-K) and relative cooling power (88 J/kg), are noted over a wide temperature range. The power law dependency of magnetic entropy change with the applied field is also investigated. Due to their significant magnetocaloric performance over a wide temperature range, these multiphase alloys may be a good candidate for room-temperature to low-temperature magnetic refrigeration.

Funder

National Research Foundation of Korea

Convergence research financial program for instructors, graduate students and professors in 2022, Changwon National University

The financial program for self-directed research capacity in 2022

Publisher

MDPI AG

Subject

Materials Chemistry,Chemistry (miscellaneous),Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3