Magnetic Switching in Vapochromic Oxalato-Bridged 2D Copper(II)-Pyrazole Compounds for Biogenic Amine Sensing

Author:

Marino NadiaORCID,Calatayud María Luisa,Orts-Arroyo Marta,Pascual-Álvarez Alejandro,Moliner Nicolás,Julve Miguel,Lloret Francesc,De Munno GiovanniORCID,Ruiz-García Rafael,Castro IsabelORCID

Abstract

A new two-dimensional (2D) coordination polymer of the formula {Cu(ox)(4-Hmpz)·1/3H2O}n (1) (ox = oxalate and 4-Hmpz = 4-methyl-1H-pyrazole) has been prepared, and its structure has been determined by single-crystal X-ray diffraction. It consists of corrugated oxalato-bridged copper(II) neutral layers featuring two alternating bridging modes of the oxalate group within each layer, the symmetric bis-bidentate (μ-κ2O1,O2:κ2O2′,O1′) and the asymmetric bis(bidentate/monodentate) (μ4-κO1:κ2O1,O2:κO2′:κ2O2′,O1′) coordination modes. The three crystallographically independent six-coordinate copper(II) ions that occur in 1 have tetragonally elongated surroundings with three oxygen atoms from two oxalate ligands, a methylpyrazole-nitrogen defining the equatorial plane, and two other oxalate-oxygen atoms occupying the axial positions. The monodentate 4-Hmpz ligands alternatively extrude above and below each oxalate-bridged copper(II) layer, and the water molecules of crystallization are located between the layers. Compound 1 exhibits a fast and selective adsorption of methylamine vapors to afford the adsorbate of formula {Cu(ox)(4-Hmpz)·3MeNH2·1/3H2O}n (2), which is accompanied by a concomitant color change from cyan to deep blue. Compound 2 transforms into {Cu(ox)(4-Hmpz)·MeNH2·1/3H2O}n (3) under vacuum for three hours. The cryomagnetic study of 1–3 revealed a unique switching from strong (1) to weak (2 and 3) antiferromagnetic interactions. The external control of the optical and magnetic properties along this series of compounds might make them suitable candidates for switching optical and magnetic devices for chemical sensing.

Funder

Spanish MICIU

Publisher

MDPI AG

Subject

Materials Chemistry,Chemistry (miscellaneous),Electronic, Optical and Magnetic Materials

Reference76 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3