Effect of Metal-Oxide Phase on the Magnetic and Magnetocaloric Properties of La0.7Ca0.3MnO3-MO (MO=CuO, CoO, and NiO) Composite

Author:

Dhungana Surendra,Casey Jacob,Neupane Dipesh,Pathak Arjun K.ORCID,Karna SunilORCID,Mishra Sanjay R.

Abstract

The study reports the synthesis and characterization of the magnetic and magnetocaloric effects of metal-oxide (MO) modified La0.7Ca0.3MnO3 perovskites manganite. The powder composite samples, with a nominal composition of (1 − x)La0.7Ca0.3MnO3-xMO (Wt.% x = 0.0, 2.5, 5.0), were prepared using the facile autocombustion method, followed by an annealing process. The phase purity and structure were confirmed by X-ray diffraction. Temperature and field-dependent magnetization measurements and Arrott analysis revealed mixed first- and second-order phase transition (ferromagnetic to paramagnetic) in composite samples. The phase transition temperature shifted to lower temperatures with the addition of MO in the composite. A large magnetic entropy change (4.75 JKg−1K−1 at 1T and 8.77 JKg−1K−1 at 5T) was observed in the La0.7Ca0.3MnO3 (LCMO) sample and was suppressed, due to the presence of the MO phase in the composite samples. On the other hand, the addition of MO as a secondary phase in the LCMO samples enhanced their relative cooling power (RCP). The RCP of all composite samples increased with respect to the pristine LCMO, except for LCMO–5%NiO. The highest RCP value of 267 JKg−1 was observed in LCMO–5%CuO samples, which was 23.4% higher than the 213 JKg−1 observed for the pure LCMO at a magnetic field of 5T. The enhanced RCP of these composites makes them attractive for potential refrigeration applications.

Publisher

MDPI AG

Subject

Materials Chemistry,Chemistry (miscellaneous),Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3