Molecular Probes for Evaluation of Oxidative Stress by In Vivo EPR Spectroscopy and Imaging: State-of-the-Art and Limitations

Author:

Babić Nikola,Peyrot FabienneORCID

Abstract

Oxidative stress, defined as a misbalance between the production of reactive oxygen species and the antioxidant defenses of the cell, appears as a critical factor either in the onset or in the etiology of many pathological conditions. Several methods of detection exist. However, they usually rely on ex vivo evaluation or reports on the status of living tissues only up to a few millimeters in depth, while a whole-body, real-time, non-invasive monitoring technique is required for early diagnosis or as an aid to therapy (to monitor the action of a drug). Methods based on electron paramagnetic resonance (EPR), in association with molecular probes based on aminoxyl radicals (nitroxides) or hydroxylamines especially, have emerged as very promising to meet these standards. The principles involve monitoring the rate of decrease or increase of the EPR signal in vivo after injection of the nitroxide or the hydroxylamine probe, respectively, in a pathological versus a control situation. There have been many successful applications in various rodent models. However, current limitations lie in both the field of the technical development of the spectrometers and the molecular probes. The scope of this review will mainly focus on the latter.

Publisher

MDPI AG

Subject

Materials Chemistry,Chemistry (miscellaneous),Electronic, Optical and Magnetic Materials

Reference115 articles.

1. Oxidative stress: a concept in redox biology and medicine

2. Clinical EPR

3. Towards human oxygen images with electron paramagnetic resonance imaging;Epel;Adv. Exp. Med. Biol.,2016

4. Oxidative Stress Imaging in Live Animals with Techniques Based on Electron Paramagnetic Resonance

5. In vivo electron paramagnetic resonance imaging of tumor heterogeneity and oxygenation in a murine model;Kuppusamy;Cancer Res.,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3