Abstract
Magnetic nanoparticles can generate heat when exposed to an alternating magnetic field. Their heating efficacy is governed by their magnetic properties that are in turn determined by their composition, size and morphology. Thus far, iron oxides (e.g., magnetite, Fe3O4) have been the most popular materials in use, though recently bimagnetic core-shell structures are gaining ground. Herein we present a study on the effect of particle morphology on heating efficiency. More specifically, we use zero waste impact methods for the synthesis of metal/metal oxide Fe/Fe3O4 nanoparticles in both spherical and cubic shapes, which present an interesting venue for understanding how spin coupling across interfaces and also finite size effects may influence the magnetic response. We show that these particles can generate sufficient heat (hundreds of watts per gram) to drive hyperthermia applications, whereas faceted nanoparticles demonstrate superior heating capabilities than spherical nanoparticles of similar size.
Funder
European Commission
Spanish Ministry of Science, Innovation and Universities
Subject
Materials Chemistry,Chemistry (miscellaneous),Electronic, Optical and Magnetic Materials
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献