Organic Spintronics: A Theoretical Investigation of a Graphene-Porphyrin Based Nanodevice

Author:

del Castillo ElisabettaORCID,Cargnoni FaustoORCID,Soave RaffaellaORCID,Trioni Mario ItaloORCID

Abstract

Spintronics is one of the most exciting applications of graphene-based devices. In this work Density Functional Theory is used to study a nanojunction consisting of two semi-infinite graphene electrodes contacted with an iron-porphyrin (FeP) molecule, which plays the role of spin filter for the incoming unpolarized electrons. The graphene-FeP contact closely resembles the recently synthesized porphyrin-decorated graphene [He et al., Nat. Chem. 2017, 9, 33–38]. The analysis of the spectral properties of the system shows a variation of the orbital occupancy with respect to the isolated FeP molecule and an hybridization with the delocalized states of the substrate, while the overall magnetic moment remains unchanged. Doping the electrodes with boron or nitrogen atoms induces a relevant rearrangement in the electronic structure of the junction. Upon B doping the current becomes significantly spin polarized, while N doping induces a marked Negative Differential Resistivity effect. We have also investigated the possible exploitation of the FeP junction as a gas sensor device. We demonstrate that the interaction of CO and O2 molecules with the Fe atom, while being strong enough to be stable at room temperature (2.0 eV and 1.1 eV, respectively), induces only minor effects on the electronic properties of the junction. Interestingly, a quenching of the spin polarization of the current is observed in the B-doped system.

Publisher

MDPI AG

Subject

Materials Chemistry,Chemistry (miscellaneous),Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3