Magnetite (Fe3O4) Nanoparticles in Biomedical Application: From Synthesis to Surface Functionalisation

Author:

Ganapathe Lokesh Srinath,Mohamed Mohd AmbriORCID,Mohamad Yunus RozanORCID,Berhanuddin Dilla Duryha

Abstract

Nanotechnology has gained much attention for its potential application in medical science. Iron oxide nanoparticles have demonstrated a promising effect in various biomedical applications. In particular, magnetite (Fe3O4) nanoparticles are widely applied due to their biocompatibility, high magnetic susceptibility, chemical stability, innocuousness, high saturation magnetisation, and inexpensiveness. Magnetite (Fe3O4) exhibits superparamagnetism as its size shrinks in the single-domain region to around 20 nm, which is an essential property for use in biomedical applications. In this review, the application of magnetite nanoparticles (MNPs) in the biomedical field based on different synthesis approaches and various surface functionalisation materials was discussed. Firstly, a brief introduction on the MNP properties, such as physical, thermal, magnetic, and optical properties, is provided. Considering that the surface chemistry of MNPs plays an important role in the practical implementation of in vitro and in vivo applications, this review then focuses on several predominant synthesis methods and variations in the synthesis parameters of MNPs. The encapsulation of MNPs with organic and inorganic materials is also discussed. Finally, the most common in vivo and in vitro applications in the biomedical world are elucidated. This review aims to deliver concise information to new researchers in this field, guide them in selecting appropriate synthesis techniques for MNPs, and to enhance the surface chemistry of MNPs for their interests.

Publisher

MDPI AG

Subject

Materials Chemistry,Chemistry (miscellaneous),Electronic, Optical and Magnetic Materials

Reference180 articles.

1. Magnetic Nanoparticles: Synthesis and Potential Biological Applications;Sukumaran;JSM Nanotechnol. Nanomed.,2018

2. Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics

3. Nanoparticles in biomedical applications

4. Perspective of Fe3O4Nanoparticles Role in Biomedical Applications

5. Potential Nanomaterials and their Applications in Modern Medicine: An Overview;Bhuiyan;ARC J. Cancer Sci.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3