Performance of Magnetic Fluid and Back Blade Combined Seal for Sealing Water

Author:

Wang Hujun,Gao Zhongquan,He Xinzhi,Li Zhenkun,Zhao Jinqiu,Luo Zhuo,Wei Yaqun

Abstract

When sealing liquids with magnetic fluid, the interfacial stability problem caused by the interaction between the magnetic fluid and the sealed liquid leads to poor sealing performance. Centrifugal force is generated by the rotation of the sealed liquid in the back blade seal, which forms back pressure to reduce the load of the seal or prevents the sealed liquid from leaking. To reduce the influence of the shaft speed on the sealing performance, a combined magnetic fluid and back blade seal was designed for sealing liquids and a combined seal experiment stand was set up. Theoretical and experimental studies were carried out. The results showed that under a higher shaft speed, the combined seal structure had better sealing performance in which the back blade seal played the main role; the magnetic fluid seal played a major role in stopping and lowering the speed to prevent seal leakage. The combined seal could run stably under different shaft speeds.

Funder

Research Project of the China University of Labor Relations

Second Batch of New Engineering Research and Practice Projects of the Ministry of Education

Publisher

MDPI AG

Subject

Materials Chemistry,Chemistry (miscellaneous),Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3