Structural and Optical Characterization of Silica Nanospheres Embedded with Monodisperse CeO2-Eu3+ Nanocrystals

Author:

Secu Corina,Bartha CristinaORCID,Matei ElenaORCID,Radu Cristian,Secu Mihail

Abstract

Luminescent nanocrystals embedded into silica microspheres were shown to be useful for silica labeling for biological applications, ensuring mechanical and chemical stability, nontoxicity, biocompatibility and optical properties. We used sol–gel technology to prepare silica nanospheres embedded with fluorescent and magnetic Eu3+(1 mol%)-doped CeO2 nanocrystals. The X-ray diffraction pattern analysis and transmission electron microscopy investigations showed CeO2:Eu3+(1 mol%) nanocrystals of about 9 nm size and Ce3+ ions substitution by the Eu3+ ions; the nanocrystals dispersed inside the nanosized silica spheres of about 400 nm diameters. The photoluminescence spectra recorded under UV-light excitation showed Eu3+ ions luminescence peaks (5D0-7FJ, J = 0–4) accompanied by a weaker 425 nm luminescence due to the silica matrix; the quantum yield was 0.14. The weak hysteresis loop and magnetization curves recorded up to 20,000 Oe showed dominantly paramagnetic behavior associated with the silica matrix; a slight opening of the hysteresis loop to a very small magnetic field (about 0.005 Oe) was due to the presence of the two rare earth ions. The photonic crystal properties of SiO2-CeO2:Eu3+(1 mol%) silica nanospheres deposited as films on quartz plates were revealed by the two weak attenuation peaks at 420 and 500 nm and were associated with the reflection from different planes. The SiO2-CeO2:Eu3+(1 mol%) nanospheres are attractive potential candidates for photonics-related applications or for multifunctional bio-labels by combining the luminescence and magnetic properties of the nanocrystals.

Funder

Romanian Ministry of Research and Innovation

Publisher

MDPI AG

Subject

Materials Chemistry,Chemistry (miscellaneous),Electronic, Optical and Magnetic Materials

Reference28 articles.

1. Emerging rare-earth doped material platforms;Nanophotonics,2019

2. Rare earth based nanostructured materials: Synthesis, functionalization, properties and bioimaging and biosensing applications;Nanophotonics,2017

3. Controlled growth of monodisperse silica spheres in the micron size range;J. Colloid Interface Sci.,1968

4. Incorporation of Ln Doped LaPO4 Nanocrystals as Luminescent Markers in Silica Nanoparticles Nanoscale;Res. Lett.,2016

5. Labelling of silica microspheres with fluorescent lanthanide-doped LaF3 nanocrystals;Nanotechnology,2007

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3