Abstract
A high temperature (up to 950 °C) sensor was proposed and demonstrated based on a micro taper in-line fiber Mach–Zehnder interferometer (MZI) structure. The fiber MZI structure comprises a single mode fiber (SMF) with two micro tapers along its longitudinal direction. An annealing at 1000 °C was applied to the fiber sensor to stabilize the temperature measurement. The experimental results showed that the sensitivity was 0.114 nm/°C and 0.116 nm/°C for the heating and cooling cycles, respectively, and, after two days, the sensor still had a sensitivity of 0.11 nm/°C, showing a good stability of the sensor. A probe-type fiber MZI was designed by cutting the sandwiched SMF, which has good linear temperature responses of 0.113 nm/°C over a large temperature range from 89 to 950 °C. The probe-type fiber MZI temperature sensor was independent to the surrounding refractive index (RI) and immune to strain. The developed sensor has a wide application prospect in the fields of high temperature hot gas flow, as well as oil and gas field development.
Funder
National Natural Science Foundation of China
Jiangxi provincial department of education science and technology project
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献