Prediction of Compressive Strength of Concrete Specimens Based on Interpretable Machine Learning

Author:

Wang Wenhu1,Zhong Yihui1,Liao Gang1,Ding Qing1,Zhang Tuan1,Li Xiangyang1

Affiliation:

1. Power China Chengdu Engineering Corporation Ltd., Chengdu 610031, China

Abstract

The aim of this paper is to explore an effective model for predicting the compressive strength of concrete using machine learning technology, as well as to interpret the model using an interpretable method, which overcomes the limitation of the unknowable prediction processes of previous machine learning models. An experimental database containing 228 samples of the compressive strength of standard cubic specimens was built in this study, and six algorithms were applied to build the predictive model. The results show that the XGBoost model has the highest prediction accuracy among all models, as the R2 of the training set and testing set are 0.982 and 0.966, respectively. Further analysis was conducted on the XGBoost model to discuss its applicability. The main steps include the following: (i) obtaining key features, (ii) obtaining trends in the evolution of features, (iii) single-sample analysis, and (iv) conducting a correlation analysis to explore methods of visualizing the variations in the factors that exert influence. The interpretability analyses on the XGBoost model show that the contribution to the compressive strength by each factor is highly in line with the conventional theory. In summary, the XGBoost model proved to be effective in predicting concrete’s compressive strength.

Funder

Nyingchi Science and Technology Plan Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3