Mechanical Properties and Cooperation Mechanism of Corroded Steel Plates Retrofitted by Laser Cladding Additive Manufacturing under Tension

Author:

Kang Lan12ORCID,Song Peng1,Liu Xinpei3,Chen Haizhou4

Affiliation:

1. School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China

2. State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou 510641, China

3. Centre for Infrastructure Engineering and Safety, School of Civil and Environmental Engineering, UNSW Sydney, Sydney, NSW 2052, Australia

4. China Construction Eighth Engineering Division Co., Ltd., Shanghai 200120, China

Abstract

As a metal additive manufacturing process, laser cladding (LC) is employed as a novel and beneficial repair technology for damaged steel structures. This study employed LC technology with 316 L stainless steel powder to repair locally corroded steel plates. The influences of interface slope and scanning pattern on the mechanical properties of repaired specimens were investigated through tensile tests and finite element analysis. By comparing the tensile properties of the repaired specimens with those of the intact and corroded specimens, the effectiveness of LC repair technology was assessed. An analysis of strain variations in the LC sheet and substrate during the load was carried out to obtain the cooperation mechanism between the LC sheet and substrate. The experimental results showed that the decrease in interface slope slightly improved the mechanical properties of repaired specimens. The repaired specimens have similar yield strength and ultimate strength to the intact specimens and better ductility as compared to the corroded specimen. The stress–strain curve of repaired specimens can be divided into four stages: elastic stage, substrate yield-LC sheet elastic stage, substrate hardening-LC sheet elastic stage, and plastic stage. These findings suggest that the LC technology with 316 L stainless steel powder is effective in repairing damaged steel plates in civil engineering structures and that an interface slope of 1:2.5 with the transverse scanning pattern is suitable for the repair process.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

State Key Laboratory of Subtropical Building Science

Guangdong Provincial Key Laboratory of Modern Civil Engineering Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3