Immune Response in Young Thoroughbred Racehorses under Training

Author:

Cappelli KatiaORCID,Amadori MassimoORCID,Mecocci SamantaORCID,Miglio AriannaORCID,Antognoni Maria Teresa,Razzuoli ElisabettaORCID

Abstract

Training has a great impact on the physiology of an athlete and, like all stressful stimuli, can trigger an innate immune response and inflammation, which is part of a wider coping strategy of the host to restore homeostasis. The Thoroughbred racehorse is a valid animal model to investigate these changes thanks to its homogeneous training and highly selected genetic background. The aim of this study was to investigate modifications of the innate immune response and inflammation in young untrained Thoroughbred racehorses during the first training season through haematological and molecular investigations. Twenty-nine Thoroughbred racehorses were followed during their incremental 3-month sprint exercise schedule. Blood collection was performed at time 0 (T0; before starting the intense training period), 30 days after T0 (T30), and 90 days after T0 (T90). Haematological parameters (red and white blood cells, haemoglobin, and platelets) were evaluated and haematocrit (HCT), mean corpuscular haemoglobin concentration (MCHC), and red cells width distribution + standard deviation (RDW-SD) were calculated. Moreover, via RT-qPCR, we investigated the expression of, Interleukin 1β (IL-1β), Interleukin 4 (IL-4) Interleukin 6 (IL-6), Interleukin 2 (IL-2), Interleukin 3 (IL-3), Interleukin 5 (IL-5) Interleukin 8 (IL-8), Trasformig Growth Factor β and α (TGF-β), Tumor necrosis factor α (TNF-α), and Interferon γ (IFN-γ)genes. Main corpuscular volume (MCV) showed a significant (p = 0.008) increase at T90. Main corpuscular haemoglobin (MCH) and haemoglobin concentration (MCHC) values were significantly augmented at both T30 (p < 0.001) and T90 (p < 0.001). Basophils were significant increased at T30 (p = 0.02) and eosinophils were significantly increased at T90 (p = 0.03). Significant differences in gene expression were found for all the genes under study, with the exception of IFN-γ and TNF-α. In particular, IL-2 (T30, p = 0.011; T90, p = 0.015), IL-4 (T30, p = 0.009; T90, p < 0.001), and IL-8 (T30, p < 0.001; T90, p < 0.001) genes were significantly upregulated at both T30 and T90 with respect to T0, TGF-β was intensely downregulated at T30 (p < 0.001), IL-5 gene expression was significantly decreased at T90 (p = 0.001), while IL-1β (p = 0.005) and IL-3 (p = 0.001) expression was strongly augmented at the same time. This study highlighted long-term adjustments of O2 transport capability that can be reasonably traced back to exercise adaptation. Moreover, the observed changes of granulocyte numbers and functions and inflammatory cytokine gene expression confirm a major role of the innate immune system in the response to the complex of stressful stimuli experienced during the training period.

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Reference76 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3