A Comprehensive Operation Status Evaluation Method for Mining XLPE Cables

Author:

Wang Yanwen,Chen Peng,Sun Yanying,Feng Chen

Abstract

At present, the online insulation monitoring and fault diagnosis of mining cables are extensively discussed, while their operation status assessment has not been deeply studied. Considering that mining cables are closely related to the safe and stable operation of coal mine power supply systems, a comprehensive evaluation method including the Analytic Hierarchy Process (AHP), the membership cloud theory, and the D-S evidence theory is proposed in this paper in order to accurately assess the operation status of the mining XLPE cable. Firstly, the membership cloud is introduced to solve the index membership degree and the weights are calculated by an improved weight vector calculation method. Secondly, the conversion from the base layer indicator membership degree to the target layer trust degree is realized based on the D-S evidence theory. Then, the cable operation status is judged via the trust degree maximum and the distribution of conflict coefficients is further analyzed to warn the indicators with a bad status in the base layer. Finally, the feasibility of the proposed evaluation method is verified by a sufficient and detailed case analysis.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference26 articles.

1. Research on single-phase-to-earth fault section location in coal mine high-voltage power supply system;Wang;Proceedings of the 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC),2017

2. 2025 scenarios and development path of intelligent coal mine;Wang;J. China Coal Soc.,2017

3. Analysis on key technologies of intelligent coal mine and intelligent mining;Wang;J. China Coal Soc.,2016

4. Discussion on theory and technology of building robust intelligent power grid in coal mine of China;Liu;J. China Coal Soc.,2020

5. A model for evaluating the production system of an intelligent mine based on unascertained measurement theory

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3