Abstract
Porous carbon nanofibers (CNFs) with high energy storage performance were fabricated with a single precursor polymer, 6FDA-TFMB, without the use of any pore-generating materials. 6FDA-TFMB was synthesized, electrospun, and thermally treated to produce binder-free CNF electrodes for electrochemical double-layer capacitors (EDLCs). Highly porous CNFs with a surface area of 2213 m2 g−1 were prepared by steam-activation. CNFs derived from 6FDA-TFMB showed rectangular cyclic voltammograms with a specific capacitance of 292.3 F g−1 at 10 mV s−1. It was also seen that CNFs exhibit a maximum energy density of 13.1 Wh kg−1 at 0.5 A g−1 and power density of 1.7 kW kg−1 at 5 A g−1, which is significantly higher than those from the common precursor polymer, polyacrylonitrile (PAN).
Funder
National Research Foundation of Korea
Korea Institute of Energy Technology Evaluation and Planning
Subject
Polymers and Plastics,General Chemistry
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献