Author:
Jian Ranran,Shi Zhonghe,Liu Haichao,Yang Weimin,Sain Mohini
Abstract
A novel torsion screw has been proposed to resolve the inadequate control of mass transfer and the thermal management of two component polymer blends and their carbon fiber composites. The novel torsional screw distinctly introduced radial flow in the torsion screw channel, which is a significant improvement over the flow pattern developed by the conventional screw. The heat transfer and mixing behavior of melt mixtures are enhanced by adapting screws with torsion elements compared with the traditional screw elements. Heat transfer efficacy in the polypropylene–polystyrene bi-phasic extrusion process improved with the increase in torsion element numbers. An increased number of newly designed torsional elements also improved the dispersion of minor phase in bi-phase polypropylene–polystyrene composition and their carbon fiber composites. The unique flow pattern induced by the torsion elements shows a synergistic effect on the melt-phase mass flow and the thermal flow field facilitating phase-to-phase thermal and molecular mobility and enhanced fiber orientation, crystallinity and mechanical properties of composite made from recycled carbon fiber/polypropylene. Microtomographs of recycled carbon fiber demonstrated the extraordinary ability of a torsion screw element to orient carbon fiber in both axial and radial directions.
Funder
the National Natural Science Foundation of China
Subject
Polymers and Plastics,General Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献