Mechanical Integrity Degradation and Control of All-Solid-State Lithium Battery with Physical Aging Poly (Vinyl Alcohol)-Based Electrolyte

Author:

He YaolongORCID,Li Shufeng,Zhou Sihao,Hu HongjiuORCID

Abstract

Ensuring the material durability of an electrolyte is a prerequisite for the long-term service of all-solid-state batteries (ASSBs). Herein, to investigate the mechanical integrity of a solid polymer electrolyte (SPE) in an ASSB upon electrochemical operation, we have implemented a sequence of quasi-static uniaxial tension and stress relaxation tests on a lithium perchlorate-doped poly (vinyl alcohol) electrolyte, and then discussed the viscoelastic behavior as well as the strength of SPE film during the physical aging process. On this basis, a continuum electrochemical-mechanical model is established to evaluate the stress evolution and mechanical detriment of aging electrolytes in an ASSB at a discharge state. It is found that the measured elastic modulus, yield stress, and characteristic relaxation time boost with the prolonged aging time. Meanwhile, the shape factor for the classical time-decay equation and the tensile rupture strength are independent of the aging history. Accordingly, the momentary relaxation modulus can be predicted in terms of the time–aging time superposition principle. Furthermore, the peak tensile stress in SPE film for the full discharged ASSB will significantly increase as the aging proceeds due to the stiffening of the electrolyte composite. It may result in the structure failure of the cell system. However, this negative effect can be suppressed by the suggested method, which is given by a 2D map under different lithiation rates and relative thicknesses of the electrolyte. These findings can advance the knowledge of SPE degradation and provide insights into reliable all-solid-state electrochemical device applications.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3