Shape Tuning and Size Prediction of Millimeter-Scale Calcium-Alginate Capsules with Aqueous Core

Author:

Zhao Jinchao,Guo Qing,Huang Wei,Zhang Teng,Wang Jing,Zhang Yu,Huang Leping,Tang YouhongORCID

Abstract

Controllable feature and size, good mechanical stability and intelligent release behavior is the capsule products relentless pursuit of the goal. In addition, to illustrate the quantitative relationship of structure and performance is also important for encapsulation technology development. In this study, the sphericity and size of millimeter-scale calcium sodium alginate capsules (mm-CaSA-Caps) with aqueous core were well tuned by manipulating the viscosity, surface tension, and density of CaCl2/carboxyl methyl cellulose (CMC) drops and sodium alginate (SA) solution. The well-tuned mm-CaSA-Caps showed significant mechanical and control-releasing property effects. The results showed that the prepared mm-CaSA-Caps were highly monodispersed with average diameter from 3.8 to 4.8 mm. The viscosity of the SA solution and the viscosity and surface tension of the CaCl2/CMC solution had significant effects on the mm-CaSA-Caps sphericity. Uniform and spherical mm-CaSA-Caps could be formed with high viscosity CaCl2/CMC solution (between 168.5 and 917.5 mPa·s), low viscosity SA solution (between 16.2 and 72.0 mPa·s) and decreased surface tension SA solution (by adding 0.01 wt.% poloxamer 407). The diameter of the mm-CaSA-Caps could be predicted by a modified Tate’s law, which correlated well with the experimental data. The Caps with sphericity factor (SF) < 0.07 had better mechanical stability, with the crushing force 2.91–15.5 times and the surface Young’s modulus 2.1–3.99 times higher than those of the non-spherical Caps (SF > 0.07). Meanwhile, the spherical Caps had a more even permeation rate, which was helpful in producing uniform and sustained releasing applications in foodstuff, medicine, agriculture and chemical industry.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3