Tribological Behavior of Hydraulic Cylinder Coaxial Sealing Systems Made from PTFE and PTFE Compounds

Author:

Deaconescu Andrea,Deaconescu TudorORCID

Abstract

Current trends concerning hydraulic cylinder sealing systems are aimed at decreasing energy consumption which can be materialized by minimizing leaks and reducing friction. The latest developments in the field of materials and sealing system geometries as well as modern simulation possibilities allow maximum performance levels of hydraulic cylinders. Reducing friction is possible by hydro-dynamic separation of the sliding and sealing points already at very low velocities and by using materials, such as plastomers, from polytetrafluoroethylene (PTFE) (virgin PTFE and filled PTFE). It is within this context that this paper discusses a theoretical and experimental study focused on the tribological behavior of coaxial sealing systems mounted on the pistons of hydraulic cylinders. It presents a methodology for the theoretical determination of the lubricant film thickness between the cylinder piston and the seal. The experimental installation used for measuring fluid film thickness is presented, and the results obtained under various working conditions are compared to the theoretical ones. For the analyzed working conditions related to pressure, speed, and temperature, the paper concludes with a set of criteria for the selection of the optimum seal material so as to maximize energy efficiency.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference31 articles.

1. Vom Dichtungselement zum Dichtungssystem;Krumeich;Ölhydraulik Pneum.,1986

2. Hydraulics & Pneumatics http://hydraulicspneumatics.com/blog/how-efficient-are-your-hydraulic-machines

3. An historical review of studies of polymeric seals in reciprocating hydraulic systems

4. The State of the Art of Rubber-Seal Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3