DFT Prediction of Factors Affecting the Structural Characteristics, the Transition Temperature and the Electronic Density of Some New Conjugated Polymers

Author:

Vu Quoc-TrungORCID,Tran Thi-Thuy-Duong,Nguyen Thuy-ChinhORCID,Nguyen Thien Vuong,Nguyen Hien,Vinh Pham Van,Nguyen-Trong DungORCID,Dinh Duc NguyenORCID,Nguyen-Tri PhuongORCID

Abstract

Conjugated polymers are promising materials for various cutting-edge technologies, especially for organic conducting materials and in the energy field. In this work, we have synthesized a new conjugated polymer and investigated the effect of distance between bond layers, side-chain functional groups (H, Br, OH, OCH3 and OC2H5) on structural characteristics, phase transition temperature (T), and electrical structure of C13H8OS using Density Functional Theory (DFT). The structural characteristics were determined by the shape, network constant (a, b and c), bond length (C–C, C–H, C–O, C–S, C–Br and O–H), phase transition temperatures, and the total energy (Etot) on a base cell. Our finding shows that the increase of layer thickness (h) of C13H8OS–H has a negligible effect on the transition temperature, while the energy bandgap (Eg) increases from 1.646 eV to 1.675 eV. The calculation of bond length with different side chain groups was carried out for which C13H8OS–H has C–H = 1.09 Å; C13H8OS–Br has C–Br = 1.93 Å; C13H8OS–OH has C–O = 1.36 Å, O–H = 0.78 Å; C13H8OS–OCH3 has C–O = 1.44 Å, O–H =1.10 Å; C13H8OS–OC2H5 has C–O = 1.45 Å, C–C = 1.51Å, C–H = 1.10 Å. The transition temperature (T) for C13H8OS–H was 500 K < T < 562 K; C13H8OS–Br was 442 K < T < 512 K; C13H8OS–OH was 487 K < T < 543 K; C13H8OS–OCH3 was 492 K < T < 558 K; and C13H8OS–OC2H5 was 492 K < T < 572 K. The energy bandgap (Eg) of Br is of Eg = 1.621 eV, the doping of side chain groups H, OH, OCH3, and OC2H5, leads to an increase of Eg from 1.621 eV to 1.646, 1.697, 1.920, and 2.04 eV, respectively.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3