The Competition of Termination and Shielding to Evaluate the Success of Surface-Initiated Reversible Deactivation Radical Polymerization

Author:

Arraez Francisco J.,Van Steenberge Paul H. M.ORCID,D’hooge Dagmar R.ORCID

Abstract

One of the challenges for brush synthesis for advanced bioinspired applications using surface-initiated reversible deactivation radical polymerization (SI-RDRP) is the understanding of the relevance of confinement on the reaction probabilities and specifically the role of termination reactions. The present work puts forward a new matrix-based kinetic Monte Carlo platform with an implicit reaction scheme capable of evaluating the growth pattern of individual free and tethered chains in three-dimensional format during SI-RDRP. For illustration purposes, emphasis is on normal SI-atom transfer radical polymerization, introducing concepts such as the apparent livingness and the molecular height distribution (MHD). The former is determined based on the combination of the disturbing impact of termination (related to conventional livingness) and shielding of deactivated species (additional correction due to hindrance), and the latter allows structure-property relationships to be identified, starting at the molecular level in view of future brush characterization. It is shown that under well-defined SI-RDRP conditions the contribution of (shorter) hindered dormant chains is relevant and more pronounced for higher average initiator coverages, despite the fraction of dead chains being less. A dominance of surface-solution termination is also put forward, considering two extreme diffusion modes, i.e., translational and segmental. With the translational mode termination is largely suppressed and the living limit is mimicked, whereas with the segmental mode termination occurs more and the termination front moves upward alongside the polymer layer growth. In any case, bimodalities are established for the tethered chains both on the level of the chain length distribution and the MHD.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3