Fabrication and Actuation of Cu-Ionic Polymer Metal Composite

Author:

Yang LiangORCID,Zhang Dongsheng,Zhang Xining,Tian Aifen

Abstract

In this study, Cu-Ionic polymer metal composites (Cu-IPMC) were fabricated using the electroless plating method. The properties of Cu-IPMC in terms of morphology, water loss rate, adhesive force, surface resistance, displacements, and tip forces were evaluated under direct current voltage. In order to understand the relationship between lengths and actuation properties, we developed two static models of displacements and tip forces. The deposited Cu layer is uniform and smooth and contains about 90% by weight of copper, according to the energy-dispersive X-ray spectroscopy (EDS) analysis data obtained. The electrodes adhere well (level of 5B) on the membrane, to ensure a better conductivity and improve the actuation performance. The penetration depth of needle-like electrodes can reach up to around 70 μm, and the structure shows concise without complex branches, to speed up the actuation. Overall the maximum displacement increased as the voltage increased. The applied voltage for the maximum force output is 8–9 V. The root mean square error (RMSE) and determination coefficient (DC) of the displacement and force models are 1.66 and 1.23, 0.96 and 0.86, respectively.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3