Effect of Absorbent Foam Filling on Mechanical Behaviors of 3D-Printed Honeycombs

Author:

Yan LeileiORCID,Zhu Keyu,Zhang Yunwei,Zhang Chun,Zheng Xitao

Abstract

Polylactic acid (PLA) hexagonal honeycomb structures were fabricated by using 3D-printing technology. By filling with absorbent polymethacrylimide (PMI) foam, a novel absorbent-foam-filled 3D-printed honeycomb was obtained. The in-plane (L- and W-direction) and out-of-plane (T-direction) compressive performances were studied experimentally and numerically. Due to absorbent PMI foam filling, the elastic modulus, compressive strength, energy absorption per unit volume, and energy absorption per unit mass of absorbent-foam-filled honeycomb under L-direction were increased by 296.34%, 168.75%, 505.57%, and 244.22%, respectively. Moreover, the elastic modulus, compressive strength, energy absorption per unit volume, and energy absorption per unit mass, under W-direction, also have increments of 211.65%, 179.85, 799.45%, and 413.02%, respectively. However, for out-of-plane compression, the compressive strength and energy absorption per unit volume were enhanced, but the density has also been increased; thus, it is not competitive in energy absorption per unit mass. Failure mechanism and dimension effects of absorbent-foam-filled honeycomb were also considered. The approach of absorbent foam filling made the 3D-printed honeycomb structure more competitive in electromagnetic wave stealth applications, while acting simultaneously as load-carrying structures.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3