Microstructural Development and Rheological Study of a Nanocomposite Gel Polymer Electrolyte Based on Functionalized Graphene for Dye-Sensitized Solar Cells

Author:

Manafi PedramORCID,Nazockdast Hossein,Karimi Mohammad,Sadighi Mojtaba,Magagnin LucaORCID

Abstract

For a liquid electrolyte-based dye-sensitized solar cell (DSSC), long-term device instability is known to negatively affect the ionic conductivity and cell performance. These issues can be resolved by using the so called quasi-solid-state electrolytes. Despite the enhanced ionic conductivity of graphene nanoplatelets (GNPs), their inherent tendency toward aggregation has limited their application in quasi-solid-state electrolytes. In the present study, the GNPs were chemically modified by polyethylene glycol (PEG) through amidation reaction to obtain a dispersible nanostructure in a poly(vinylidene fluoride-co-hexafluoro propylene) copolymer and polyethylene oxide (PVDF–HFP/PEO) polymer-blended gel electrolyte. Maximum ionic conductivity (4.11 × 10−3 S cm−1) was obtained with the optimal nanocomposite gel polymer electrolyte (GPE) containing 0.75 wt% functionalized graphene nanoplatelets (FGNPs), corresponding to a power conversion efficiency of 5.45%, which was 1.42% and 0.67% higher than those of the nanoparticle-free and optimized-GPE (containing 1 wt% GNP) DSSCs, respectively. Incorporating an optimum dosage of FGNP, a homogenous particle network was fabricated that could effectively mobilize the redox-active species in the amorphous region of the matrix. Surface morphology assessments were further performed through scanning electron microscopy (SEM). The results of rheological measurements revealed the plasticizing effect of the ionic liquid (IL), offering a proper insight into the polymer–particle interactions within the polymeric nanocomposite. Based on differential scanning calorimetry (DSC) investigations, the decrease in the glass transition temperature (and the resultant increase in flexibility) highlighted the influence of IL and polymer–nanoparticle interactions. The obtained results shed light on the effectiveness of the FGNPs for the DSSCs.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3