Abstract
Metal-plastic composites have the potential to combine enhanced electrical and thermal conductivity with a lower density than a pure metal. The drawback has often been brittleness and low impact resistance caused by weak adhesion between the metal filler and the plastic. Based on our observation that aluminum foil sticks very strongly to poly(ethylene terephthalate) (PET) if it is used as a backing during compression moulding, this work set out to explore PET filled with a micro and a nano aluminum (Al) powder. In line with other composites using filler particles with low aspect-ratio, the tensile modulus increased somewhat with loading. However, unlike most particle composites, the strength did not decrease and most surprisingly, the Izod impact resistance increased, and in fact more than doubled with certain compositions. Thus, the Al particles acted as a toughening agent without decreasing the modulus and strength. This would be the first case where addition of a metal powder to a plastic increased the modulus and impact resistance simultaneously. The Al particles also acted as nucleating agents but it was not sufficient to make PET crystallize as fast as the injection moulding polyester, poly(butylene terephthalate) (PBT).
Subject
Polymers and Plastics,General Chemistry
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献